
Infra-red Arduino Point and Route Controller

One of the weaknesses of diode matrix when dealing with points for a fiddle yard is that all the
point motors will ‘fire’ at once. With Seep motors and the like drawing up to 2 amps each at the
same time makes great demands on the power supply and/or Capacitor Discharge Unit. This
approach allows for multiple points to be fired individually in a sequence avoiding this problem.

Using a member of the Arduino family to programmatically operate the points via a set of in-
expensive relays was experimented with and found to be very effective and cost efficient.

The use of an Arduino Uno would do this job but the use of the more powerful Arduino Mega
2560 would be a better place to start as it has more connections and memory.

The output side of the relays would be wired to the points as though they were normal switch
controls. In the case of self-cancelling point motors, such as Fleischmann, one relay per point
would suffice. With Peco, Gaugemaster and Seep motors one relay is required for each winding
on the motor but this extra expense is still minor - the necessary code variation is shown later.

Wires to the points

Wires to the Arduino Mega

Connections
Arduino Pin 22 to Relay board In1
Arduino Pin 24 to Relay board In2
Arduino Pin 26 to Relay board In3
Arduino Pin 28 to Relay board In4
Arduino Pin 30 to Relay board In5
Arduino Pin 32 to Relay board In6
Arduino Pin 34 to Relay board In7
Arduino Pin 36 to Relay board In8
Arduino Pin 5v (next to Pin 22) to Relay board VCC
Arduino Pin GND (next to Pin 52) to Relay board GND

In this example, an infra-red remote was used to control the points through the Arduino. Whilst
control buttons and/or switches could be used, the IR remote saves a lot more wiring and does not
add much to the the cost of the project.

Arduino Pin 2 to IR receiver S
Arduino Pin GND (next to Pin 53) to IR receiver - (minus)
Arduino Pin 5v (Next to Pin 23) to to IR centre connection

IR Remote Codes

TV Infra-red remotes output a stream of numbers, different for each button pressed. The first task
is to discover what each of these numbers are. To do this, a simple program (or ‘sketch’ to use the
Arduino parlance) is required. The Arduino programming software, downloadable free and safely
from https://www.arduino.cc/en/Main/Software for Windows, Linux or Mac, has a facility called the
‘Serial Monitor’ that will allow these codes to be viewed. From this a list of what numbers are
produced by each button can be prepared. Once these codes are known then it will be possible to
proceed to writing the sketch for the IR Train Controller.

There is often a repeating code (84696351 in this case) that outputs even when a button is not
being pressed and these should be ignored. It will be obvious which is the correct number at the
point of pressing the relevant button.

https://www.arduino.cc/en/Main/Software

The complete setup looks like this.

In this example, it was decided to use only
6 Fleischmann points and so relays IN1
and In2 are not used.

Also, when wiring up the points for
demonstration, the shortness of the point
motor wiring took precedence over a
logical order. Consequently, the example
sketch will reflect this.

The relay board was powered from the
Arduino Mega, however, in everyday use it
is recommended that a separate 5v power
source is provided to it. On the extreme
right is a jumper that would then be
removed and the VCC connection for the
separate power source is revealed.

Take care not to get the +Pos and -Neg
connections reversed as this will damage
the relay board.

16 relay bank boards are available but
have to be powered by a separate 12v
regulated source instead of a 5v source.

Parts List

8 Channel Relay Board
Module for Arduino

£5.50

ATmega2560-16AU
CH340G MEGA 2560 R3
Board and USB Cable

£9.99

Remote Control and Sensor

£2.59

AC 100-240V to DC 12V/2A
Converter UK Regulated Power
Supply Adapter Transformer = 5.5
mm x 2.1 mm plug

£6.79

Sketch for reading IR Remote Codes in Serial Monitor

#include <IRLib.h>

int RECV_PIN = 2;

IRrecv My_Receiver(RECV_PIN);
IRdecode My_Decoder;
IRdecodeHash My_Hash_Decoder;

void setup() {
 My_Receiver.enableIRIn(); // Start the receiver
 Serial.begin(9600);
 delay(2000);while(!Serial);//delay for Leonardo
}

void loop() {
 if (My_Receiver.GetResults(&My_Decoder)) { //Puts results in My_Decoder
 My_Hash_Decoder.copyBuf(&My_Decoder); //copy the results to the hash decoder
 My_Decoder.decode();
 My_Hash_Decoder.decode();
 Serial.println(My_Hash_Decoder.hash, DEC);
 delay(1000);
 My_Receiver.resume();
 }
}
Example Sketch for Point control

#include <IRLib.h>

int RECV_PIN = 2;

IRrecv My_Receiver(RECV_PIN);
IRdecode My_Decoder;
IRdecodeHash My_Hash_Decoder;
// ******* Define the Xinda button codes
#define RIGHT_ARROW 553536955
#define LEFT_ARROW 1386468383
#define OK 465573243
#define UP_ARROW 5316027
#define DOWN_ARROW 2747854299
#define BUTTON_0 465573243
#define BUTTON_1 3238126971
#define BUTTON_2 2538093563
#define BUTTON_3 4039382595
#define BUTTON_4 2534850111
#define BUTTON_5 1033561079
#define BUTTON_6 1635910171
#define BUTTON_7 2351064443
#define BUTTON_8 1217346747
#define BUTTON_9 71952287
#define star 851901943
#define hashkey 1053031451
#define JUNK 84696351
#define JUNK1 84696349

#define TURN 1
#define CLOSE 0

// Arduino Digital I/O pin number
#define Relay_1 22 //unused In1
#define Relay_2 24 //unused In2
#define Relay_3 26 //button 6 In3
#define Relay_4 28 //button 5 In4
#define Relay_5 30 //button 2 In5
#define Relay_6 32 //button 1 In6
#define Relay_7 34 //button 4 In7
#define Relay_8 36 //button 3 In8

int Pin02Read ;
int Pin03Read ;
int Pin04Read ;
int Pin05Read ;
int Pin06Read ;
int Pin07Read ;
int Pin08Read ;
int Pin09Read ;
int Pin10Read ;
long unsigned mvalue ;
int mdelay ;

void setup() {
 My_Receiver.enableIRIn(); // Start the receiver
 Serial.begin(9600);
 delay(2000); while (!Serial); //delay for Leonardo
 pinMode(Relay_1, OUTPUT);
 pinMode(Relay_2, OUTPUT);
 pinMode(Relay_3, OUTPUT);
 pinMode(Relay_4, OUTPUT);
 pinMode(Relay_5, OUTPUT);
 pinMode(Relay_6, OUTPUT);
 pinMode(Relay_7, OUTPUT);
 pinMode(Relay_8, OUTPUT);

 digitalWrite(Relay_1, CLOSE);
 digitalWrite(Relay_2, CLOSE);
 digitalWrite(Relay_3, CLOSE);
 digitalWrite(Relay_4, CLOSE);
 digitalWrite(Relay_5, CLOSE);
 digitalWrite(Relay_6, CLOSE);
 digitalWrite(Relay_7, CLOSE);
 digitalWrite(Relay_8, CLOSE);
 mvalue = 0 ;
 mdelay = 500 ;
}

void loop() {
 mvalue == 0 ;
 if (My_Receiver.GetResults(&My_Decoder)) {//Puts results in My_Decoder
 My_Hash_Decoder.copyBuf(&My_Decoder);//copy the results to the hash decoder
 My_Decoder.decode();
 My_Hash_Decoder.decode();
 //Serial.println(My_Hash_Decoder.hash, DEC); // Do something interesting with this value
 My_Receiver.resume();
 mvalue = My_Hash_Decoder.hash ;
 }
 if (mvalue != 0) {
 Serial.println(mvalue);
 }

 switch (mvalue) {
 case 0 :
 break ;
 case JUNK :
 mvalue = 0 ;
 // Do Nothing
 break ;
 case JUNK1 :
 mvalue = 0 ;
 // Do Nothing
 break ;
 case BUTTON_0 : // set all points to Close
 digitalWrite(Relay_1, CLOSE);
 delay(mdelay) ;
 digitalWrite(Relay_2, CLOSE);
 delay(mdelay) ;
 digitalWrite(Relay_3, CLOSE);
 delay(mdelay) ;
 digitalWrite(Relay_4, CLOSE);
 delay(mdelay) ;
 digitalWrite(Relay_5, CLOSE);
 delay(mdelay) ;
 digitalWrite(Relay_6, CLOSE);
 delay(mdelay) ;
 digitalWrite(Relay_7, CLOSE);
 delay(mdelay) ;
 digitalWrite(Relay_8, CLOSE);
 mvalue = 0 ;
 break ;
 case BUTTON_1 :
 Pin02Read = digitalRead(Relay_6);
 if (Pin02Read == TURN) {
 digitalWrite(Relay_6, CLOSE);
 }
 else {
 digitalWrite(Relay_6, TURN);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 case BUTTON_2 :
 Pin05Read = digitalRead(Relay_5);
 if (Pin05Read == TURN) {
 digitalWrite(Relay_5, CLOSE);
 }
 else {
 digitalWrite(Relay_5, TURN);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 case BUTTON_3 :
 Pin04Read = digitalRead(Relay_8);
 if (Pin04Read == TURN) {
 digitalWrite(Relay_8, CLOSE);
 }
 else {
 digitalWrite(Relay_8, TURN);
 }
 mvalue = 0 ;

 delay(1000) ;
 break ;
 case BUTTON_4 :
 Pin06Read = digitalRead(Relay_7);
 if (Pin06Read == TURN) {
 digitalWrite(Relay_7, CLOSE);
 }
 else {
 digitalWrite(Relay_7, TURN);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 case BUTTON_5 :
 Pin06Read = digitalRead(Relay_4);
 if (Pin06Read == TURN) {
 digitalWrite(Relay_4, CLOSE);
 }
 else {
 digitalWrite(Relay_4, TURN);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 case BUTTON_6 :
 Pin07Read = digitalRead(Relay_3);
 if (Pin07Read == TURN) {
 digitalWrite(Relay_3, CLOSE);
 }
 else {
 digitalWrite(Relay_3, TURN);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 case BUTTON_7 : //Route 1 points 1 and 2
 Pin02Read = digitalRead(Relay_6);
 if (Pin02Read == CLOSE) {
 digitalWrite(Relay_6, TURN);
 }
 else {
 digitalWrite(Relay_6, CLOSE);
 }
 delay(mdelay) ;
 Pin05Read = digitalRead(Relay_5);
 if (Pin05Read == CLOSE) {
 digitalWrite(Relay_5, TURN);
 }
 else {
 digitalWrite(Relay_5, CLOSE);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 case BUTTON_8 : // Route 2 points 3 and 4
 Pin04Read = digitalRead(Relay_8);
 if (Pin04Read == CLOSE) {
 digitalWrite(Relay_8, TURN);
 }
 else {

 digitalWrite(Relay_8, CLOSE);
 }
 delay(mdelay) ;
 Pin06Read = digitalRead(Relay_7);
 if (Pin06Read == CLOSE) {
 digitalWrite(Relay_7, TURN);
 }
 else {
 digitalWrite(Relay_7, CLOSE);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 case BUTTON_9 : // Route 3 points 1,2,3,4
 Pin02Read = digitalRead(Relay_6);
 if (Pin02Read == CLOSE) {
 digitalWrite(Relay_6, TURN);
 }
 else {
 digitalWrite(Relay_6, CLOSE);
 }
 delay(mdelay) ;
 Pin05Read = digitalRead(Relay_5);
 if (Pin05Read == CLOSE) {
 digitalWrite(Relay_5, TURN);
 }
 else {
 digitalWrite(Relay_5, CLOSE);
 }
 delay(mdelay) ;
 Pin04Read = digitalRead(Relay_8);
 if (Pin04Read == CLOSE) {
 digitalWrite(Relay_8, TURN);
 }
 else {
 digitalWrite(Relay_8, CLOSE);
 }
 delay(mdelay) ;
 Pin06Read = digitalRead(Relay_7);
 if (Pin06Read == CLOSE) {
 digitalWrite(Relay_7, TURN);
 }
 else {
 digitalWrite(Relay_7, CLOSE);
 }
 mvalue = 0 ;
 delay(1000) ;
 break ;
 }
}

Code variation for Peco, Gaugemaster and Seep motors
The current to each solenoid winding has to be turned ON and then OFF after a short delay.
 digitalWrite(Relay_1, ON);
 delay(CDU);
 digitalWrite(Relay_1, OFF);

‘CDU’ is the variable containing the desired delay e.g 500 is 0.5 seconds, 250 is 0.25 seconds.
The above extra code would be equal to one CLOSE or one TURN as appropriate.

